Úvod do práce so systémom DERIVE

Počítačový algebrický systém DERIVE (PAS DERIVE) sa často označuje za "matematického asistenta". Je to výkonný a jednoducho ovládateľný softvér určený na riešenie širokého okruhu matematických problémov. Cieľom tohto úvodu je predstaviť niektoré základné funkcie a príkazy systému DERIVE.

1. Pracovná plocha aplikácie DERIVE.

Po otvorení aplikácie DERIVE sa objaví nasledujúca pracovná plocha:

à	De	rive	5 -	[Algel	bra 1	1																									. 8 >	(
	rant anti- rd rd	ile <u>E</u>	dit	Insert	<u>A</u> u	thor	<u>S</u> im	plify	Solve	e <u>C</u>	alculu	is <u>D</u>	eclar	e <u>O</u>	ptions	Wir	ndow	<u>H</u> elp)											L	. <u>8 ×</u>	1
	D	2		9	¥	Ē	8	\times	₽₽	2	David	[:::]	=	~	e,	SUB	lim	д	ſ	Σ	Π	4	永	8								
Γ																																1
 P	res	s F1	f	or H	le 1 r	1													Γ									_				i
-	1 1	=		~	×.				_	_							_			_			_	_			_					1
]] ~		=	~~~	<i>7</i> 2	μ				_													_									-
1	α	βγ	δ	E	ζŋ	0	ι	к)	ц	V	ξo	π	ρ	σ	v	φ >	< ¥	ω	(<u> </u>	• *		<u>× =</u>	<	1	<u> -</u>	<u>1</u>	U	11	êπ	0
	A	BI	<u> </u>	E	Z H	θ	I	K /	∧ M	N	ΞΟ	Π	P	ΣΤ	r	٩	(¥	<u>Ω</u>)]]	} -	-1-	1	± ≠	>	2	<u>^</u>	<u>•</u> ⊆		t :	îγ	C
	👧 St	art	2	\$ 🔀	۲	٩	6				👿 м	icros	oft W	ord -	Intr	4	Derive	e 5			3	D e	erive	5 - [Alge	э		9 00	(): B	- 38	11:07	1

Pracovná plocha systému DERIVE je podobná ako u iných základných programov pracujúcich pod operačným systémom WINDOWS.

Táto pracovná plocha sa nazýva *algebrické okno*. Používa sa na zápis a prácu s algebrickými výrazmi, rovnicami a vzorcami. V dolnej časti okna sa nachádza úzke dlhé pole pre vkladanie príkazov. Nazýva sa *vstupné pole*. K dispozícii sú dve skupiny tlačidiel umiestnených pod ním. Skupina vľavo pozostáva z veľkých a malých písmen gréckej abecedy, skupina vpravo obsahuje základné matematické symboly.

DERIVE má 2D aj 3D grafické okno.

V nasledujúcich častiach nájdete stručné informácie o tom, ako vkladať a pracovať s algebraickými výrazomi, s rovnicami, a ako nakresliť jednoduchý obrázok.

2. Zápis výrazu v systéme DERIVE.

Po aktivácii systému DERIVE je zvyčajne kurzor umiestnený vo *vstupnom poli*. Ak sa tam kurzor nenachádza, aktivujte ho ľavým tlačidlom myši. Teraz je možné zapísať výraz alebo rovnicu a vložiť ich do systému DERIVE.

I. Zapíšme výraz $\frac{1}{4} - \frac{7}{12} + \frac{9}{17}$. Na to je potrebné vložiť do vstupného poľa nasledujúci zápis

1/4 - 6/12 + 9/17. Potom na klávesnici stlačíme tlačidlo Enter.Na obrazovke sa objaví matematický zápis

Poznámka 1:

Pri zápise matematického výrazu v systéme DERIVE je možné používať všetky štandardné tlačidlá klávesnice určené pre pohyb v texte a editovanie: \leftarrow , \rightarrow , Home, End, Backspace(\leftarrow) a Delete.

II. Zapíšme výraz 9²⁷: Do vstupného poľa zapíšeme 9^27. Po stlačení tlačidla **Enter** sa na obrazovke objaví:

#2: 9

III. Zapíšme výraz $\frac{x-4}{x^2-9x+20}$. Napíšeme $(x-4)/(x^2-9x+20)$, stlačíme Enter a na obrazovke sa objaví zápis:

IV. Pokúste sa teraz zapísať výraz $\frac{3}{x-5} - \frac{7-x}{x^2+1}$ samostatne.

Poznámka 2:

- 1. Venujte pozornosť tomu, kde a ako umiestniť zátvorky. Pri zápise výrazov a rovníc je dovolené používať iba obyčajné okrúhle zátvorky: (). Nepoužívajte hranaté zátvorky: []. Tieto sú určené na zápis vektorov a matíc.
- 2. Po stlačení klávesy **Enter** skontrolujte, či je výraz zobrazený na obrazovke naozaj zhodný s tým, ktorý ste mali v úmysle zapísať.
- 3. Ak sa zobrazený výraz nezhoduje s tým, ktorý ste chceli vložiť, musíte ho upraviť, t.j. editovať. K tomu je potrebné vykonať nasledujúce operácie:
 - Myšou dvakrát rýchlo za sebou ťuknite na číslo riadku, v ktorom sa nachádza nesprávne vložený výraz. Vo vstupnom poli sa objaví kópia tohto výrazu, ktorú môžete editovať.
 - Urobte potrebné úpravy a stlačte Enter.
 - Vráťte sa na krok 2.

V. Zapíšte samostatne aj nasledujúci výraz: $\frac{\sqrt{d^2 - f^2}}{d - f}$.

Poznámka 3:

Znak druhej odmocniny $\sqrt{}$ sa dá vložiť dvoma spôsobmi:

Spôsob I: Vložíme sqrt a potom zapíšeme do zátvoriek výraz pod odmocninou, t.j.

$$sqrt(d^2 - f^2)/(d - f)$$

Spôsob II: V poli s matematickými symbolmi stlačíme klávesu s a znak druhej odmocniny sa objaví vo *vstupnom poli*. Potom do zátvoriek zapíšeme výraz pod odmocninou, t.j.

$$\sqrt[4]{(d^2 - f^2)/(d - f)}$$
 .

VI. Pomocou inštrukcií uvedených v kroku 3 v poznámke 2 upravte výraz, ktorý ste zapísali pomocou bodu V., na nový výraz

$$\sqrt{\frac{d^2-f^2}{d-f}} \, .$$

3. Zjednodušovanie výrazov v systéme DERIVE.

Systém DERIVE teraz použijeme na úpravu a zjednodušenie výrazov, ktoré sme doteraz vložili.

I. Zjednodušme výraz $\frac{1}{4} - \frac{7}{12} + \frac{9}{17}$. Vložený výraz $\frac{1}{4} - \frac{7}{12} + \frac{9}{17}$ označíme ťuknutím pravým tlačidlom myši na číslo riadku, v ktorom je umiestnený. Z menu vyberieme príkaz **Simplify**. Potom zvolíme príkaz **Basic**.

Dostaneme nasledujúci výsledok: $\frac{10}{51}$.

Poznámka 4:

- 1. Preddefinované nastavenie v systéme DERIVE zabezpečuje, že výsledok je zapísaný v tvare zlomku.
- 2. V ďalšom texte budeme skráteme zapisovať skutočnosť, že niekoľko operácií sa má vykonať bezprostredne za sebou v danom poradí, tak ako v predchádzajúcom príklade pri zjednodušení výrazu $\frac{1}{4} \frac{7}{12} + \frac{9}{17}$. Postupnosť krokov budeme zapisovať nasledovne:

Označíme výraz $\frac{1}{4} - \frac{7}{12} + \frac{9}{17} >$ Simplify > Basic.

Zápis výsledku vo forme desatinného čísla: Označíme riadok, v ktorom sa výraz nachádza a stlačíme klávesu \mathbb{Z} .

Teraz ukážeme inú, rýchlejšiu metódu, ako zjednodušiť výraz použitím klávesy

II. Označíme výraz 9²⁷, stlačíme klávesu **E**. Získame nasledujúci výsledok:

#7:

58149737003040059690390169

III. Zjednodušte výrazy $\frac{x-4}{x^2-9x+20}$, $\frac{3}{x-5}-\frac{7-x}{x^2+1}$ a $\sqrt{\frac{d^2-f^2}{d-f}}$, označením každého z nich a použitím

klávesy **E**. Mali by ste postupne získať nasledujúce výsledky:

#8:
#9:
#10:

$$\frac{1}{x-5}$$

 $\frac{2 \cdot (2 \cdot x^2 - 6 \cdot x + 19)}{(x-5) \cdot (x^2 + 1)}$

Vymažte všetky doteraz vložené výrazy. Postupne ich označujte a stláčajte klávesu Delete.

3. Faktorizácia – rozklad na ireducibilné polynómy.

I. Rozložte výraz $2x^3 - 17x^2 + 27x + 18$: Zapíšeme výraz > Slačíme Simplify > Factor > Factor. Získame výsledok v tvare:

#4:

 $(x - 3) \cdot (x - 6) \cdot (2 \cdot x + 1)$

4. Odstraňovanie zátvoriek.

I. Odstráňte zátvorky vo výraze (3x - 5)(2x - 1)(4x - 3): Zapíšeme výraz > Slačíme Simplify > Expand > Expand. Získame:

#5:

$$3 2^{2}$$

24·x - 70·x + 59·x - 15

II. Odstráňte zátvorky vo výraze $(x+5)^{10}$.

5. Vkladanie a riešenie rovníc v systéme DERIVE.

I. Vyriešte rovnicu $x^2 + 5x + 6 = 0$: Zapíšeme výraz $x^2 + 5x + 6 >$ Slačíme Solve > Expression > Solve. Získame riešenie rovnice v tvare:

#8:

 $x = -3 \lor x = -2$

Poznámka 5:

Ak hľadáme riešenie rovnice v tvare f(x) = 0, nie je potrebné zapísať úplný výraz aj s poslednou časťou "= 0", t.j. stačí vložiť ľavú stranu rovnice, výraz f(x) a potom stlačit postupne za sebou klávesy **Solve > Expression > Solve.**

II. Vyriešte rovnicu $2x^3 - 17x^2 + 27x + 18 = 0$. Pretože v bode 4 sme už vložili do systému výraz z ľavej strany rovnice $2x^3 - 17x^2 + 27x + 18$, nie je potrebné vkladať ho opätovne. Vykonáme teda nasledujúce operácie:

- Označíme riadok, v ktorom sa výraz $2x^3 17x^2 + 27x + 18$ nachádza.
- Ak nie je vstupné pole prázdne, vymažeme ho nasledujúcim spôsobom: Pravým tlačidlom myši ťukneme na pole a označíme výraz, ktorý sa tam nachádza, potom stlačíme klávesu **Delete**.
- Stlačíme klávesu F3 a požadovaný výraz $2x^3 17x^2 + 27x + 18$ sa objaví vo vstupnom poli.
- Stlačíme Enter. Teraz môžeme danú rovnicu vyriešiť.
- Použijeme postup uvedený v bode I.

6. <u>Úprava výrazov</u>.

Vložte výraz $p = \frac{16u}{u-a}$. Premenná p je vyjadrená pomocou premenných u a a. Ak chceme I. vyjadriť premennú a pomocou premenných u a p, potom je potrebné vykonať nasledujúce operácie:

Vložte výraz $p = \frac{16u}{u-a}$ > stlačte Solve > Expression > v príkaze Solution Variables označte premennú *a* > **Solve**.

Dostanete nasledujúci výsledok:

 $a = u - \frac{16 \cdot u}{n}$ #11:

II. Teraz upravte daný výraz tak, aby vyjadroval premennú *u* pomocou premenných *a* a *p*.

7. Substitúcia.

Vložte vzorec $a = \rho(1+\theta)^n$. Nahrad'te premenné na pravej strane nasledujúcimi číselnými hodnotami

 $\rho = 10, \theta = 1/3, n = 5$. Na to je potrebné: Vložiť vzorec > stlačiť klávesu \mathbb{S}_{U_B} .

V okne, ktoré sa objaví, vykonajte nasledujúce:

- Označte premennú n > t uknite na pole New Value: a vložte 5; -
- Označte premennú $\rho > t'uknite na pole New Value: a vložte 10;$
- Označte premennú θ > ťuknite na pole New Value: a vložte 1/3.

Dostanete nasledujúci výsledok:

#15:

Teraz výsledok zapíšte v tvare desatinného čísla.

Vymažte všetko, čo bolo doteraz zapísané.

8. Kresba grafov.

I. Nakreslite graf funkcie y = 3x - 2: Vložíme výraz 3x - 2 a stlačíme klávesu

Výsledkom operácie bude otvorenie nového okna – grafického okna, ktoré prekryje algebrické okno, s ktorým sme pracovali doteraz. V grafickom okne je zobrazená pravouhlá karteziánska súradnicová sústava v rovine.

Stlačením klávesy sa v grafickom okne objaví graf funkcie y = 3x - 2 v danej súradnicovej sústave, ako je ilustrované na nasledujúcom obrázku.

II. Nakreslite graf funkcie y = 5 + x v tej istej súradnicovej sústave. Mali by ste získať nasledujúci výsledok:

Poznámka 6:

- 1. Pre návrat do algebrického okna je potrebné použiť klávesu
- 2. Ak chcete používať súčastne algebrické aj grafické okno, postupujte nasledovne: Z menu vyberte Window > Tile vertically.
- 3. Ak chcete prepínať medzi oboma oknami, musíte vždy inicializovať to okno, v ktorom práve chcete pracovať.
- III. Nájdite súradnice priesečníka dvoch nakreslených grafov.

Úlohu najprv vyriešime graficky:

- Stlačte tlačidlo [™]. V jednom z grafov sa objaví malá kružnica. Pomocou klávesnicových tlačidiel ↓ a ↑ môžete preniesť túto kružnicu z jedného grafu do druhého. Použitím klačidiel ←, → môžete pohybovať kružnicou v príslušnom grafe, v ktorom je umiestnená.
- 3. Premiestnite kružnicu do priesečníka priamok. V ľavom rohu pod obrázkom uvidíte zobrazené súradnice daného priešečníka v nasledujúcom tvare: Cross: 3.541667, 8.541667

🐴 Derive 5			_ 8 ×
∬ <u>F</u> ile <u>E</u> dit Insert <u>S</u> et <u>O</u> ptions <u>W</u> indow <u>H</u> e	p		
🛛 🗅 🖨 🖬 🎒 р 🎋 🗙 💇 🧖	╘┼╪╞╬╬╏╺┑│	→, + + → + :::::::::::::::::::::::::::::	
2D-plot 1:1 Tracing expression #2		🚰 Algebra 1	
y ²⁰		#1: $y = 3 \cdot x - 2$ #2: $y = 5 + x$	
	/		
5	.		
20 -15 -10 -5	5 10 15 2		
-15			
/ . ₋₂₀			
🕂 Cross: 3.541667, 8.541667	Center: 0, 0	Scale: 5:5	
$ \lor = \scriptstyle \scriptstyle$			
α β γ δ ε ζ η θ ι κ λ μ ν Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν	<pre></pre>	$ \begin{array}{c} \mathbf{\Psi} & \mathbf{\Psi} \\ \mathbf{\Psi} & \mathbf{\Psi} \\ \mathbf{X} & \mathbf{\Psi} \\ \mathbf{X} \end{array} $	
🏦 Start 🛛 🔍 🗶 🥏 🌺 🎛 🔍	👿 Microsoft Word - Introducti.	. A Derive 5	🛃 🛄 🍕 🎫 🚴 🛛 11:35

Teraz nájdite súradnice priesečníka analyticky, riešením sústavy rovníc určujúcich dané dve priamky:

- 1. Prepnite systém na algebrické okno.
- 2. Z menu vyberte Solve > System.
- 3. V malom okne, ktoré sa objaví, označte čísla rovníc v systéme, ktoré chcete riešiť: V príkaze Number: napíšte 2 > Ok.
- 4. Objaví sa nové okne, v ktorom musíte označit dané dve rovnice. Pretože tieto rovnice už boli do systému vložené, nemusíme ich znovu vkladať. Stačí vložiť čísla riadkov, v ktorých sú zapísané, v našom prípade #1 a #2, ako ukazuje obrázok. Potom stlačte **Solve.**

5. Dostanete nasledujúci výsledok :

#4:

 $\left[x = \frac{7}{2} \land y = \frac{17}{2}\right]$

Zapíšte ho v tvare desatinných čisel.

II. Nakreslite parabolu $y = x^2$ a priamku y = 2x + 24. Nájdite súradnice ich priesečníkov, najprv graficky a potom analyticky.

Zatvorte grafické okno. Otvorte algebrické okno označením všetkých výrazov a stlačením **Delete.** Okno zväčšite rýchlym ťuknutím dvakrát za sebou na modré pole navrchu.

9. Derivovanie.

I. Nájdite deriváciu funkcie $f(x) = x^3 + 3x^2 + 2$: Vložíme $x^3 + 3x^2 + 2$ > stlačíme 3 > Variable: x > Order: 1 > Simplify.

Výsledok bude v tvare:

#2: $\frac{d}{dx} (x^3 + 3 \cdot x^2 + 2)$

#3:

II. Nájdite deriváciu funkcie $f(x) = x^3 \sin x$.

10. Integrovanie.

I. Vypočítajte neurčitý integrál funkcie $f(x) = 3x^2 + 6x$: Ťukneme na číslo riadku, v ktorom sa nachádza výraz $3x^2 + 6x$ > stlačíme $f(x) = 3x^2 + 6x$ vyberieme neurčitý integrál Indefinite > Simplify.

Dostaneme nasledujúci výsledok:

#4:
$$\int (3 \cdot x^2 + 6 \cdot x) dx$$

Zopakujte celý postup, ale tentoraz vložte c v poli Constant: v okne, ktoré sa objaví po stlačení klávesy **J**. dostanete:

#6: INT(3·x² + 6·x, x, c) #7:

II. Vypočítajte neurčitý integrál funkcie $f(x) = x^3 \sin x$.

	2			
3	• x -	+	6	- >

+ 3.x

11. Vkladanie textu v systéme DERIVE.

Nasledujúca postupnosť krokov opisuje vkladanie textu v systéme DERIVE:

- 1. Ak je algebraické okno prázdne, vyberieme z menu príkaz **Insert** > **Text object**, aktivujeme obdĺžnikové pole, ktoré sa objaví, a vložíme požadovaný textový reťazec.
- 2. Ak algebrické okno nie je prázdne, označíme riadok, za ktorým chceme vložiť text a postupujeme podľa inštrukcií v kroku 1.
- 3. Ak chceme vložiť text v inom jazyku a fonte, potom ešte pre použitím príkazu Insert vyberieme z menu príkaz Options > Display > Font of New Text Objects, vyberieme želaný (Font) a ďalej postupujeme podľa kroku 1, resp. 2.

12. Niektoré užitočné klávesové skratky:

Key	Usage
F3	Skopíruje vyznačený výraz z algebrického okna do vstupného poľa.
F4	Ako F3, ale výraz vo vstupnom poli bude zapísaný v zátvorkách.
F1	Otvorí Help menu.
Ctrl E	Vloží exponenciálnu konštantu e.
Ctrl P	Vloží konštantu π .
Ctrl Q	Vloží druhú odnocnicu.
Ctrl I	Vloží imaginárnu jednotku <i>i</i> .

13. Niektoré užitočné preddefinované funkcie systému DERIVE.

Exponenciálne funkcie:

EXP(z) – exponenciálna funkcia premennej z, t.j. e^z (keď chceme zapísať priamo e^z namiesto EXP(z), vkladáme s nasledujúcou syntaxou *výraz* | ^z).

Logaritmické funkcie:

LN(z) - prirodzený logaritmus výrazu z (z > 0). LOG(z) - prirodzený logaritmus výrazu z (z > 0). LOG(z, 10) - dekadický logaritmus výrazu z (z > 0).LOG(z, a) - logaritmus výrazu z (z > 0) so základom a.

Goniometrické funkcie:

 $SIN(z) - \sin z$ $COS(z) - \cos z$ TAN(z) - tg z $COT(z) - \cot g z$

Cyklometrické funkcie, inverzné ku goniometrickým funkciám:

 $ASIN(z) - \arcsin z$ $ACOS(z) - \arccos z$ $ATAN(z) - \arctan z$ $ACOT(z) - \arccos z$

Poznámka 8: Názvy funkcií nemusia byť zapísané veľkými písmenami.