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Double Integrals� Basic Properties� Fubini�s Theorems�

The Volume of a Curvilinear Cylinder�

Consider the following problem� Let D � E� be a bounded region and f be a nonne�
gative continuous function of two variables� de�ned on D� We want to �nd the volume
of a curvilinear cylinder� determined by D and f � it means volume of the solid boun�
ded below by D �lying in the plane Pxy�� above by the surface z � f�x� y� and by the
corresponding cylindrical surface� generated by lines� passing through boundary points
of D parallel to Oz� The procedure is analogical to that for computing the area of a
curvilinear trapezoid�

First we divide D into n subregions D�� D�� � � � � Dn� not overlapping and such that
areas A�D��� A�D��� � � � � A�Dn� can be computed� Then we choose an arbitrary point
from each subregion� 	�i� �i
 � Di� i � �� �� � � � � n� Finally we form the sum

nX
i��

f��i� �i�A�Di��

This number is equal to the volume of a solid� bounded above by parts of planes
z � f��i� �i�� therefore depending on the division of the region D and the choice of points
	�i� �i
� It is natural to consider this sum as an approximation of the desired volume of
given curvilinear cylinder�

This idea leads to the concept of double integrals for functions of two variables�
over plane regions� In what follows we will discuss a simpler case� if the region D is
a two�dimensional interval� it means� a rectangle and the function f is not necessarily
nonnegative�

Double Integrals over Intervals�

Let us denote by I two�dimensional interval� which is the cartesian product of two
closed intervals� ha� bi and hc� di�

I � f	x� y
 � a � x � b� c � y � dg � ha� bi � hc� di

Let us take an arbitrary division of the interval ha� bi�

a � x� � x� � x� � � � � � xr � b

and an arbitrary division of the interval hc� di�

c � y� � y� � y� � � � � � ys � d



where r and s are any natural numbers� By these two divisions there is given a division
of the interval �rectangle� I� consisting of n � r�s subintervals �rectangles�� I�� I�� � � � � In�
such that

I �
n�
i��

Ii and A�I� �
nX
i��

A�Ii��

Now let f be any function of two variables� de�ned and bounded on I� In the similar

way as above we can compute the sum
nP
i��

f��i� �i�A�Ii�� for any division of I and any

choice of points 	�i� �i
 � Ii� This number is called the integral sum�

If there exists limit of integral sums as the area of the greatest subinterval
�rectangle� approaches zero� it is called the double integral of f on �over� I
and denoted by

RR
I

f�x� y�dxdy�Therefore�

ZZ
I

f�x� y�dxdy
def
� lim

maxA�Ii���

nX
i��

f��i� �i�A�Ii�

Function f is then called integrable on I�

Su�cient condition of integrability�
If a bounded function of two variables possesses only a �nite number of points of

discontinuity on an interval I � E�� then it is integrable on this interval�

Corollary�
Every function of two variables� continuous on an interval I � E� is integrable on I�

Example �� Show� that the function� de�ned by

f�x� y� �

�
�� if x�y is rational�

� if x�y is irrational

is not integrable on any two dimensional interval�

Example �� Show� that the function f�x� y� � c� where c is an arbitrary constant is
integrable on any two dimensional interval I and

RR
I

f�x� y�dx � cA�I��

Basic Properties of Double Integrals over Intervals�

�� Linearity� If functions f� and f� are integrable on an interval I and c�� c� � R� thenZZ
I

�c�f��x� y� � c�f��x� y��dxdy � c�

ZZ
I

f��x� y�dxdy � c�

ZZ
I

f��x� y�dxdy�

�� Additivity� If a function f is integrable on an interval I and intervals I� and I� form
a division of the interval I �I� � I� � I� A�I� � I�� � 
�� thenZZ

I

f�x� y�dxdy �

ZZ
I�

f�x� y�dxdy �

ZZ
I�

f�x� y�dxdy�

�� Monotonicity� If functions f� and f� are integrable on an interval I and f��x� y� �
f��x� y� for each 	x� y
 � I� thenZZ

I

f��x� y�dxdy �

ZZ
I

f��x� y�dxdy�



Corollary�
If f is a function integrable on I and f�x� y� � 
 for each 	x� y
 � I� then

ZZ
I

f�x� y�dxdy � 
�

Evaluating Double Integrals over Intervals�

Fubini�s Theorem �First Form��

If a function of two variables f�x� y� is continuous on an interval I � ha� bi � hc� di�
then ZZ

I

f�x� y�dxdy �

dZ
c

�
�

bZ
a

f�x� y�dx

�
A dy �

bZ
a

�
�

dZ
c

f�x� y�dy

�
Adx

Example �� Compute
RR
I

f�x� y�dxdy� if

a� f�x� y� � x� � y� � �� I � h
� �i � h
� �i�

b� f�x� y� � sin��x � y�� I � h
� �i � h���� �i

Regular Regions in E��

The plane region

R � f	x� y
 � a � x � b� g�x� � y � f�x�g � E��

where a� b � R� a � b and f�x� and g�x� are functions continuous on ha� bi and such
that for each x � ha� bi it is g�x� � f�x�� is called a regular region of the type xy�
The plane region

R � f	x� y
 � c � y � d� g�y� � x � f�y�g � E��

where c� d � R� c � d and f�y� and g�y� are functions continuous on hc� di and such that
for each y � hc� di it is g�y� � f�y�� is called a regular region of the type yx�

Example ��Describe the following region R � f	x� y
 � � � x � �� � � y � xg �of the
type xy� as a regular region of the type yx�

Example �� Describe the following regions as regular regions� or unions of regular regions�
for both types� xy and yx�

a� R � f	x� y
 � 
 � x � y � �g�

b� R � f	x� y
 � �x� � y� � �� 	 �x� � �y� � ��g

Double Integrals over Regular Regions�

Double integrals of bounded functions of two variables over regular regions are de��
ned similarly as those over two dimensional intervals� It can be proved that analogical
properties as those stated for integrals over intervals �linearity� additivity� monotonicity�
su�cient condition of integrability� are still valid also for integrals over regular regions�



Evaluating Double Integrals over Regular Regions�

Fubini�s Theorem �Strong Form��

If a function of two variables f�x� y� is continuous on a regular region of the type xy

R � f	x� y
 � a � x � b� g�x� � y � h�x�g�

then ZZ
R

f�x� y�dxdy �

bZ
a

�
B�

h�x�Z
g�x�

f�x� y�dy

�
CAdx�

If a function of two variables f�x� y� is continuous on a regular region of the type yx

R � f	x� y
 � c � y � d� g�y� � x � h�y�g�

then ZZ
R

f�x� y�dxdy �

dZ
c

�
B�

h�y�Z
g�y�

f�x� y�dx

�
CAdy�

Example �� Evaluate
RR
R

x

y
dxdy� if R � f	x� y
 � � � x � y � �g�

Example �� Evaluate
RR
R

yex dxdy� if R � f	x� y
 � y� � x � y � �g�

Example �� Evaluate
RR
R

�x� � y� dxdy� if the region R is bounded by parabolas y � x�

and x � y� �

Example �� Evaluate
RR
R

�x 
 y� dxdy� if the region R is bounded by straight lines

y � 
� y � x� x� y � ��

Example �
� Show� that we are able to evaluate
RR
R

ey
�

dxdy� where R is the region from

the Example ��a� above� only if R is described as a regular region of the type yx�


