8th Lecture

Double Integrals, Basic Properties, Fubini’s Theorems.

The Volume of a Curvilinear Cylinder.

Consider the following problem: Let D C E5 be a bounded region and f be a nonne-
gative continuous function of two variables, defined on D. We want to find the volume
of a curvilinear cylinder, determined by D and f, it means volume of the solid boun-
ded below by D (lying in the plane P,,), above by the surface 2 = f(z,y) and by the
corresponding cylindrical surface, generated by lines, passing through boundary points
of D parallel to O,. The procedure is analogical to that for computing the area of a
curvilinear trapezoid.

First we divide D into n subregions D, Dy, ---, D,, not overlapping and such that
areas A(Dy), A(Ds),---,A(D,) can be computed. Then we choose an arbitrary point
from each subregion: [§;,n;] € D;, i =1,2,---  n. Finally we form the sum

Zf(&-,m)A(Di)-

This number is equal to the volume of a solid, bounded above by parts of planes
z = f(&, ), therefore depending on the division of the region D and the choice of points
(&, mi]. Tt is natural to consider this sum as an approximation of the desired volume of
given curvilinear cylinder.

This idea leads to the concept of double integrals for functions of two variables,
over plane regions. In what follows we will discuss a simpler case, if the region D is
a two-dimensional interval, it means, a rectangle and the function f is not necessarily
nonnegative.

Double Integrals over Intervals.

Let us denote by I two-dimensional interval, which is the cartesian product of two
closed intervals, (a,b) and (c, d).

I={[z,y]:a<z<b, c<y<d}={a,b)x {(c,d)
Let us take an arbitrary division of the interval (a, b):
a=To <11 < Ty <+ <z, =0b
and an arbitrary division of the interval (e, d):

c=y <y <ypp<--<y;=d



where r and s are any natural numbers. By these two divisions there is given a division
of the interval (rectangle) I, consisting of n = r.s subintervals (rectangles): Iy, I, - - - , I,

such that
I_UI and  A(/ }:A

=1
Now let f be any function of two variables, deﬁned and bounded on I. In the similar
way as above we can compute the sum »_ f(&,n,)A([;), for any division of I and any
i=1
choice of points [£;,7;] € I;. This number is called the integral sum.

If there exists limit of integral sums as the area of the greatest subinterval

(rectangle) approaches zero, it is called the double integral of f on (over) I
and denoted by [[ f(z,y)dxdy.Therefore:
I

max A(T

[ @izay & v Zf ) A
I

Function f is then called integrable on I.

Sufficient condition of integrability.
If a bounded function of two variables possesses only a finite number of points of
discontinuity on an interval I C FEs, then it is integrable on this interval.

Corollary.
Every function of two variables, continuous on an interval I C Fs is integrable on I.

Example 1. Show, that the function, defined by

1, if z.y is rational,
flx,y) = { 0, if z.y is irrational

is not integrable on any two dimensional interval.

Example 2. Show, that the function f(z,y) = ¢, where ¢ is an arbitrary constant is
integrable on any two dimensional interval I and [[ f(z,y)dx = cA(I).
T

Basic Properties of Double Integrals over Intervals.

1. Linearity. If functions f; and f, are integrable on an interval I and ¢y, ¢y € R, then

/I/(clﬁ(x,y) + o fo(z,y))dody = ¢, /I/ f1(z, y)dady + cz/l fo(, y)dxdy.

2. Additivity. If a function f is integrable on an interval I and intervals I; and I, form
a division of the interval I (I; U, =1, A(l; N1Iy) =0), then

//fxydxdy—//f:vyd:vdy+//fa:ydxdy

3. Monotonicity. If functions f; and f; are integrable on an interval I and fi(x,y) <
fa(z,y) for each [z,y] € I, then
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Corollary.
If f is a function integrable on I and f(z,y) > 0 for each [z,y] € I, then

J[ s sy = o

Evaluating Double Integrals over Intervals.
Fubini’s Theorem (First Form):

If a function of two variables f(z,y) is continuous on an interval I = (a,b) X (¢, d),

then
b

J[ stisay - /d /b flag)ds | dy = [ /d f(,y)dy | d

a

Example 3. Compute [[ f(z,y)dzdy, if
I

a) flz,y) =2 +y*+4, I =(0,2) x(0,2),
b) f(z,y) =sin(2z +vy), I =(0,7) x (n/4, )

Regular Regions in F,.

The plane region
R={[z,y]:a<z<b, g(x) <y < flo)} C By

where a,b € R, a < b and f(z) and g(z) are functions continuous on (a,b) and such
that for each z € (a,b) it is g(x) < f(x), is called a regular region of the type xy.
The plane region

R={[z,y]:c<y<d, g(y) <z < fy)} C By,

where ¢,d € R) ¢ < d and f(y) and g(y) are functions continuous on (¢, d) and such that
for each y € (¢, d) it is g(y) < f(y), is called a regular region of the type yx.

Example 4.Describe the following region R = {[z,y] : 1 <z <2, 1 <y < x} (of the
type xy) as a regular region of the type yx.

Example 5. Describe the following regions as regular regions, or unions of regular regions,
for both types, xy and yx.

a) R={[zr,y]: 0<x<y<1},

b) R={[z,y]: (a®+y* > 1) A (2? +4y? < 4)}

Double Integrals over Regular Regions.

Double integrals of bounded functions of two variables over regular regions are defi-
ned similarly as those over two dimensional intervals. It can be proved that analogical
properties as those stated for integrals over intervals (linearity, additivity, monotonicity,
sufficient condition of integrability) are still valid also for integrals over regular regions.



Evaluating Double Integrals over Regular Regions.
Fubini’s Theorem (Strong Form):
If a function of two variables f(z,y) is continuous on a regular region of the type xy
R={[z,y]:a <z <b, g(z) <y < h(x)},
then
b [ h(z)
// [z, y)dedy = / / fz,y)dy | dz.
R x)

a (
If a function of two variables f(z,y) is continuous on a regular region of the type yx
R={[z,yl:c<y<d, g(y) <z <h(y)},

then
d [ h

[[ sizay = [ /( )f(x,y)dx dy.
R )

¢ (
Example 6. Evaluate [[ L dedy, if R={[z,y]: 1 <z <y <2}
rR Y
Example 7. Evaluate [[ ye” dady, if R = {[z,y] : y* <z <y+2}.
R

Example 8. Evaluate [[(2? + y) dxzdy, if the region R is bounded by parabolas y = 22
R

and z = y? .

Example 9. Evaluate [[(z — y) daxdy, if the region R is bounded by straight lines
R

y=0,y=z, x+y=2.

Example 10. Show, that we are able to evaluate [[e¥" drdy, where R is the region from
R
the Example 5.a) above, only if R is described as a regular region of the type yx.



