Functions of Two and More Variables, Domains of Definition, Graphs, Limits

n-dimensional Euclidean Space ($n \in \mathrm{~N}$).
A space, consisting of all n-tuples (ordered) of real numbers, where the distance between two points $X=\left[x_{1}, x_{2}, \cdots, x_{n}\right], Y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]$ is defined as

$$
d(X, Y)=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots+\left(y_{n}-x_{n}\right)^{2}}
$$

is called n-dimensional Euclidean space and denoted by E_{n}.
(If $n=1$, then $d(X, Y)=\left|x_{1}-y_{1}\right|$.) It can be proved, that for every natural n and for any triplet of points $X, Y, Z \in E_{n}$, it holds:

1. $d(X, Y) \geq 0, \quad d(X, Y)=0 \Longleftrightarrow X=Y$,
2. $d(X, Y)=d(Y, X)$,
3. $d(X, Y) \leq d(X, Z)+d(Z, Y)$.

The function $d: E_{n} \times E_{n} \rightarrow \mathbb{R}$ is called the metric on E_{n} and the couple $\left(E_{n}, d\right)$ is then the metric space.

Let $X_{0} \in E_{n}$ and $\varepsilon>0$. The set

$$
N_{\varepsilon}\left(X_{0}\right)=\left\{X \in E_{n}: d\left(X, X_{0}\right)<\varepsilon\right\}
$$

is called the ε-neighbourhood of X_{0}.
It is clear, that $N_{\varepsilon}\left(X_{0}\right)$ is an open interval, if $n=1$, a disk, if $n=2$ and a sphere, if $n=3$.

Let $M \subset E_{n}$. A point $X_{0} \in M$ is called an interior point of M, if there exists $\varepsilon>0$ such that $N_{\varepsilon}\left(X_{0}\right) \subset M$.

The set of all interior points of a set M is called the interior of the set M.
A set M is said to be open, if it consists of its interior points.
A point $X_{0} \in E_{n}$ is called a boundary point of a set $M \subset E_{n}$, if each $N_{\varepsilon}\left(X_{0}\right)$ contains at least one point which belongs to the set M and at least one point which does not belong to the set M.

The set of all boundary points of a set M is called the boundary of the set M.
A set M is said to be closed, if it contains its boundary.

Remark. It is accustomed that coordinates of points in E_{2} and E_{3}, instead of $\left[x_{1}, x_{2}\right]$ and $\left[x_{1}, x_{2}, x_{3}\right]$, are denoted by $[x, y]$ and $[x, y, z]$.

Example 1. Let

$$
M=\{[x, y]: 0 \leq x \leq 1,0<y<1\} \subset E_{2} .
$$

Find the interior and the boundary of the set M.
Example 2. Let

$$
M=\{[x, y, z]: 0<x<1,0<y<1, z=0\} \subset E_{3}
$$

Find the interior and the boundary of the set M.
Let $M \subset E_{n}$. Then

- The set M is called connected, if each pair of its points can be joined by a simple curve, lying in the set M.
- The set M is called bounded, if there exists a real number $R \in \mathbb{R}$ and a point $X_{0} \in E_{n}$ such that for each $X \in M: d\left(X, X_{0}\right)<R$.

Example 3. Let
a) $M=\left\{[x, y]: \frac{x^{2}}{4}+y^{2}<1\right\} \subset E_{2}$,
b) $M=\{[x, y]: x . y<1, x \geq y \geq\} \subset E_{2}$,
c) $M=\left\{[x, y, z]: x^{2}+y^{2}<4,0<z<1\right\} \subset E_{3}$,
d) $M=\{[x, y, z]: x . y . z>0\} \subset E_{3}$.

Find the interior and the boundary of the set M and find out whether the set M is open, closed, bounded and connected.

Functions of Several Variables.

Let $M \subset E_{n}, M \neq \emptyset$. A mapping f which assigns to each $X=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in M$ exactly one real number is called a real function of n real variables. M is its domain of definition, $M=D(f)$.

It is written:

$$
y=f(X)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

if $n=2: \quad z=f(x, y), \quad$ if $n=3: u=f(x, y, z)$.
Example 4. Sketch domains of definition for the following functions:
a) $f(x, y)=\frac{1}{x-2 y}, \quad D(f)=\{[x, y]: x-2 y \neq 0\} \subset E_{2}$,
b) $f(x, y)=\ln x y, \quad D(f)=\{[x, y]: x y>0\} \subset E_{2}$,
c) $f(x, y, z)=\sqrt{1-x^{2}-y^{2}-z^{2}}, \quad D(f)=\left\{[x, y, z]: x^{2}+y^{2}+z^{2} \leq 1\right\} \subset E_{3}$,
d) $f(x, y, z)=z \cdot \arcsin (x+y), \quad D(f)=\{[x, y, z]:-1 \leq x+y \leq 1\} \subset E_{3}$.

Some of significant concepts, like, for example, boundedness (boundedness from below and boundedness from above), maximum, minimum and operations on functions are defined analogously as in the real case $(n=1)$.

Example 5. Let

$$
M=\{[x, y, z]: 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\} \subset E_{3}
$$

and let $f(x, y, z)=x+y+3 z$. Show, that the function f is bounded on M and find the minimum and the maximum of f on M.

Graph of a Function of Several Variables.

Let f be a function of n variables $\left(D(f) \subset E_{n}\right)$. Graph of the function f is a set $G(f) \subset E_{n+1}$ of all ordered $(n+1)$-tuples $\left[x_{1}, x_{2}, \cdots, x_{n+1}\right]$ such that $\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in$ $D(f)$ and $x_{n+1}=f\left(x_{1}, x_{2}, \cdots x_{n}\right)$. Therefore

$$
G(f)=\left\{\left[x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}\right]: X=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in D(f), x_{n+1}=f(X)\right\} \subset E_{n+1} .
$$

If $n=2\left(D(f) \subset E_{2}\right)$, then

$$
G(f)=\{[x, y, z]:[x, y] \in D(f), z=f(x, y)\} \subset E_{3} .
$$

Example 6. Find domains of definition and sketch graphs of the following functions:
a) $f(x, y)=1-2 x-2 y$,
b) $f(x, y)=\frac{1}{2 x^{2}+3 y^{2}}$,
c) $f(x, y)=\sqrt{1-x^{2}-y^{2}}$.

If $G(f) \subset E_{3}$, then its orthogonal projection onto the plane $P_{x y}$ coincides with the domain of definition $D(f)$. Each straight line parallel to O_{z} intersects $G(f)$ at most at one point. In fact, this is the necessary condition for a surface in E_{3}, to be the graph of a function of two variables. Just this is the reason, why, for example, any whole spherical surface cannot be graph of a function of two variables.

Example 7. Find domains of definition, sketch graphs and determine quadric surfaces whose parts the following graphs are.
a) $f(x, y)=\sqrt{1-y^{2}}$,
b) $f(x, y)=\sqrt{x^{2}-9}$,
c) $f(x, y)=-\sqrt{3-x}$,
d) $f(x, y)=\sqrt{4+y}$,
d) $f(x, y)=-\sqrt{4+x^{2}+y^{2}}$.
e) $f(x, y)=-\sqrt{y-x^{2}}$,
f) $f(x, y)=\sqrt{x^{2}+y^{2}-1}$,
g) $f(x, y)=\sqrt{y^{2}-x^{2}}$,

Limit of a Function of Several Variables.

Definition of the limit is the same, as for functions of one real variable.

We suppose, that a function f of n variables is defined in a neighbourhood of a point $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$, excepting possibly the point A.

It is said, that a real number b is the limit of the function f at the point A, if for each $\varepsilon>0$ there exists $\delta>0$, such that $X \in O_{\delta}(A), X \neq A$, implies $|f(X)-b|<\varepsilon$. Limit of f at A is denoted by $\lim _{X \rightarrow A} f(X)$, therefore

$$
\lim _{X \rightarrow A} f(X)=b \stackrel{\text { def }}{\Longleftrightarrow} \forall \varepsilon>0 \exists \delta>0: 0<d(X, A)<\delta \Rightarrow|f(X)-b|<\varepsilon
$$

In the case if f is a function of two variables and $A=\left[x_{0}, y_{0}\right]$ it can be written in the form:

$$
\begin{gathered}
\lim _{[x, y] \rightarrow\left[x_{0}, y_{0}\right]} f(x, y)=\lim \quad \begin{aligned}
& f(x, y)=b \stackrel{x_{0}}{ } \stackrel{\text { def }}{\Longleftrightarrow} \\
& y \rightarrow y_{0}
\end{aligned} \\
\stackrel{\text { def }}{\Longleftrightarrow} \forall \varepsilon>0 \exists \delta>0: 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta \Rightarrow|f(x, y)-b|<\varepsilon
\end{gathered}
$$

Analogously in the case of a function of three variables.
Example 8. By means of the definition prove, that $\lim _{[x, y] \rightarrow[1,2]}(x+y)=3$.
Example 9. By means of the definition prove, that $\lim _{[x, y] \rightarrow[0,0]} \frac{x y}{x^{2}+y^{2}}$ does not exist.
Let us suppose, that for two functions of n variables f_{1} a f_{2} it is valid:

$$
\lim _{X \rightarrow A} f_{1}(X)=b_{1} \quad \text { and } \quad \lim _{X \rightarrow A} f_{2}(X)=b_{2}
$$

Then

1. $\lim _{X \rightarrow A}\left(c_{1} f_{1}(X)+c_{2} f_{2}(X)\right)=c_{1} b_{1}+c_{2} b_{2}$, for any real constants c_{1}, c_{2}.
2. $\lim _{X \rightarrow A}\left(f_{1}(X) \cdot f_{2}(X)\right)=b_{1} \cdot b_{2}$,
3. $\lim _{X \rightarrow A} \frac{f_{1}(X)}{f_{2}(X)}=\frac{b_{1}}{b_{2}}$, for $b_{2} \neq 0$.

Improper limits for functions of n variables (at a proper point) are also defined in the same way as in the one-dimensional case. Let us introduce definition of the improper limit $+\infty$ at a proper point $A \in E_{n}$ (Definition for $-\infty$ is analogical):

$$
\lim _{X \rightarrow A} f(X)=\infty \stackrel{\text { def }}{\Longleftrightarrow} \forall K>0 \exists \delta>0 \quad 0<d(X, A)<\delta \Longrightarrow f(X)>K
$$

Example 10. By means of the definition prove, that $\lim _{[x, y] \rightarrow[0,0]} \frac{1}{x^{2}+y^{2}}=\infty$.

