Differential Equations of the $1^{\text {st }}$ order

Basic Notions

Many physical, chemical or technical problems lead to differential equations.
An ordinary differential equation is an equation which involves one independent variable x , an unknown function $y=f(x)$ and its derivatives $y^{\prime}, y^{\prime}, \ldots y^{(n)}$. In general a differential equation can be written as follows $F\left(x, y, y^{\prime}, \ldots y^{(n)}\right)=0$. The order of a differential equation is the order of the highest derivative which appears.

Every function which, when substituted, together with its derivatives into the given differential equation, turns it into identity on a set M is called a solution (or an integral) of the differential equation on the set M.

Differential Equations of the $\mathbf{1}^{\text {st }}$ order

The general form of the $1^{\text {st }}$ order differential equation is $F\left(x, y, y^{\prime}\right)=0$. There exist $1^{\text {st }}$ order differential equations, having no solution, for example: $\left(y^{\prime}\right)^{2}+x^{2}+y^{2}+1=0$ But in general case, a $1^{\text {st }}$ order differential equation has infinitely many solutions, expressed by a formula $y=\varphi(x, c)$, containing an arbitrary constant c . Such family of solutions is called the general solution. The general solution is not always expressible in an explicit form and sometimes we represent it in an implicit form $\phi(x, y, c)=0$.
A particular solution is any function $y=\varphi\left(x, c_{0}\right)$, which is obtained from the general solution, when we assign to the arbitrary constant a definite value $c=c_{0}$. In what follows when solving concrete equations we'll most often be concerned with particular solutions specified by the initial condition (Cauchy's initial condition): $y\left(x_{0}\right)=y_{\circ}$
A solution, not obtained from the general solution and not containing any constant is called a singular solution.

Example 1. Consider the equation: $y^{\prime} y-y e^{x}=0$. Verify, that $y=e^{x}+1$ is the particular solution, satisfying the initial condition: $y(0)=2$. The function $y=0$ is the singular solution.

Graph of a solution is called the integral curve of the given differential equation.
Example 2. Cooling of a body: According to the law established by Newton, the rate of cooling of a physical body is directly proportional to the difference between the temperature of the body and that of surrounding medium. Let at the time $t=t_{\circ}=0$ the temperature of the body be $T_{\circ}>0\left(T(0)=T_{\circ}\right)$. We want to determine the relationship between the variable temperature of body T and the time t . Let's suppose, that the temperature of the medium is 0 . By Newton's law: $\frac{d T}{d t}=-k(T-0)=-k T$, where k is the proportionality factor. It can be shown, that each function $T=C e^{-k t}$ is the particular solution satisfying the given initial condition.

Differential Equations with Separated Variables

Differential equations $p(x)+q(x) y^{\prime}=0$ (1) where $p(x)$ is a function continuous on an interval (a, b) and $q(y)$ on an interval (c, d) are called $1^{\text {st }}$ order differential equations with separated variables.

Each solution of the equation (1) on an interval $J \subset(a, b)$ has the form: $\int p(x) d x+\int q(y) d y=C$, what is the general solution in implicit form.

Remark. If $q(y) \neq 0$ on (c, d), then through each point form the region $D=(a, b) \times(c, d) \subset E_{2}$ is passing just one integral curve of the equation (1).

Example 3. a) Solve the equation $2 x+\frac{y^{\prime}}{y}=0$
b) Find the particular solution of the equation $x+y y^{\prime}=0$, satisfying the initial condition $y(3)=4$

A special case of the differential equation (1) are equations of the form $y^{\prime}=f(x)$, with t e general solution $y=\int f(x) d x+C$

Example 4. a) Find the particular solution of the equation $y^{\prime}=3 x^{2}$, satisfying $y(1)=2$
b) Solve the equation $y^{\prime}=\frac{1}{2 \sqrt{x}}$

Differential Equations with Separable Variables

Equations of the form $p_{1}(x) p_{2}(y)+q_{1}(x) q_{2}(y) y^{\prime}=0$
(2) are called $1^{\text {st }}$ order differential equations with separable variables, $p_{1}(x)$ and $q_{1}(x)$ are supposed to be continuous on (a, b), $p_{2}(y)$ and $q_{2}(y)$ on (c, d).

Under the condition $q_{1}(x) \cdot p_{2}(x) \neq 0$, the equation (2) can be reduced to $\frac{p_{1}(x)}{q_{1}(x)}+\frac{q_{2}(x)}{p_{2}(x)} y^{\prime}=0$ (3)

Equations (2) and (3) are not completely equivalent. If $p_{2}(y)=0$, for $y_{1}=b_{1}, y_{2}=b_{2}, \ldots$ $y_{k}=b_{k}$, where $b_{i} \in(c, d) \quad i=1,2, \ldots k$ then functions $\mathrm{y}=\mathrm{b}_{\mathrm{i}}$ are solutions of the equation (2).

It follows, that solution of the equation (2) are all function $y=b_{i}$ and all solutions of the equation with separated variables (3), it means of the form
$\int \frac{p_{1}(x)}{q_{1}(x)} d x+\int \frac{q_{2}(y)}{p_{2}(y)} d y=C, \quad C \in R$
Example 5. Solve the equations:
a) $y-x y^{\prime}=0$,
b) $\frac{y^{2}+4}{x}+y y^{\prime}=0$

Example 6. Find the particular solution of the equation $y^{\prime}=\frac{2 x y}{1+x^{2}}$, satisfying the initial condition $y(1)=-1$

Linear Differential Equations of the $\mathbf{1}^{\text {st }}$ order

Differential equations $y^{\prime}+p(x) y=q(x)$ (4) where $p(x)$ and $q(x)$ are continuous on (a,b) are called non-homogeneous (with right hand member) linear differential equation, if $q(x)$ is a nonzero function. If $q(x)=0$ on (a, b), it means: $y^{\prime}+p(x) y=0$ (5) is called homogeneous (without right hand member) linear differential equation.

The equation (5) is separable and it can be easily shown, that $y=C e^{-\int p(x) d x}$, where C is a constant, is the general solution of (5) on (a, b).

A non-homogeneous linear dif. equation (4) is solved by the method of variation of a constant. First we find the general solution o the associated linear differential equation (5) and then we look for a solution of (4) in the form $y=C(x) e^{-\int p(x) d x}$, where $C(x)$ is such a function that y satisfies the equation (4). Thus $C(x)=\int g(x) e^{\int p(x) d x}+C$ and consequently $y=\left[\int g(x) e^{\int p(x) d x}+C\right] e^{-\int p(x) d x}=C e^{-\int p(x) d x}+e^{-\int p(x) d x} \int g(x) e^{\int p(x) d x} \quad, \quad C \in R$

The general solution of the equation (4) is always expressible as a sum of the general solution of (5) and one particular solution of (4).

Example 7. Solve equations:
a) $y^{\prime}-\frac{y}{x}=x^{2}$,
b) $y^{\prime}-y \cot x=2 x \sin x, y\left(\frac{\pi}{2}\right)=0$
c) $y^{\prime}-\frac{1}{x} y=\frac{\sin x}{x}, y(\pi)=0$,
d) $y^{\prime}-\frac{2}{x+1} y=(x+1)^{3}, y(0)=\frac{3}{2}$

