Kolmá axonometria

Axonometria je rovnobežné premietanie na jednu priemetňu (axonometrická priemetňa r - nesplývajúca so žiadnou zo súradnicových rovín p, n, m), pričom do tejto priemetne premietame priestorové útvary aj ich priemety do súradnicových rovín (príp. celý súradnicový trojhran Ox+y+z+). Ak je smer premietania s kolmý na axonometrickú priemetňu r, hovoríme o kolmej axonometrii. Axonometrická priemetňa r pretína všetky súradnicové roviny , rÇp =XY, rÇn =XZ, rÇm =YZ (obr. 1.41). Trojuholník XYZ, ktorého vrcholy sú priesečníky axonometrickej priemetne r postupne so súradnicovými osami x, y, z, nazývame axonometrický trojuholník (alebo aj Pelcov stopný trojuholník). Kolmým priemetom súradnicových osí x, y, z do axonometrickej priemetne r sú priamky xA, yA, zA, ktoré sú výškami axonometrického trojuholníka XYZ. Kolmým priemetom začiatku súradnicovej sústavy O do r je ortocentrum trojuholníka XYZ. Útvar Oaxayaza nazývame axonometrický osový kríž. Posúvaním axonometrickej priemetne r v smere s meníme veľkosť axonometrického trojuholníka XYZ (vzdialenosť r od začiatku O), ale priemet axonometrického osového kríža sa nemení (obr. 1.42). Všetky stopné trojuholníky sú navzájom rovnoľahlé so stredom rovnoľahlosti v bode O a určujú tú istú axonometriu. V kolmej axonometrii je axonometrický trojuholník XYZ vždy ostrouhlý.

Bod A priestoru kolmo premietneme do pôdorysne do bodu A1. Kolmý priemet Aa bodu A do axonometrickej priemetne r - a xonometrický priemet a kolmý priemet A1a pôdorysu A1 do r - axonometrický pôdorys , sú dvojicou axonometrických priemetov bodu A, združených v smere priemetu osi z kolmom na stranu XY axonometrického trojuholníka. Ak je nákresňou axonometrická priemetňa, vynecháme označenie axonometrických priemetov, index "a" (obr. 1.43).

Bod A je jednoznačne určený dvojicou svojich axonometrických priemetov (A, A1). Obdobne možno bod A priestoru určiť dvojicou axonometrických priemetov (A, A2) - axonometrický priemet a axonometrický nárys, príp. (A, A3) - axonometrický priemet a axonometrický bokorys.

Axonometrický pôdorys a axonometrický priemet pôdorysne splývajú (axonometrická priemetňa), axonometrický nárys pôdorysne je v priemete osi x a axonometrický bokorys v priemete osi y (obr. 1.44). Všetky body pôdorysne majú totožný axonometrický priemet a axonometrický pôdorys, P=P1. Rovnako platí pre body nárysne N=N2, axonometrický pôdorys nárysne je v priemete osi x a axonometrický bokorys v priemete osi z. Axonometrický pôdorys bokorysne je v priemete osi y, axonometrický nárys v priemete osi z a M=M3 pre každý bod bokorysne.

Roviny p, n, a m rozdelia priestor na osem oktantov (obr. 1.45):

I. x > 0, y > 0, z > 0                              V. x > 0, y > 0, z < 0

II. x > 0, y < 0, z > 0                              VI. x > 0, y < 0, z < 0

III. x < 0, y < 0, z > 0                              VII. x < 0, y < 0, z < 0

IV. x < 0, y > 0, z > 0                              VIII. x < 0, y > 0, z < 0

Útvary zobrazujeme v axonometrii s viditeľnosľou vzhľadom na I. oktant, trojhran Ox+y+z+, uplatnenou len na axonometrický priemet.

Ak súradnicové osi x, y, z zvierajú s axonometrickou priemetňou r rôzne uhly, potom dĺžky priemetov jednotkových úsečiek jx, jy a jz na osiach sú rôzne, axonometrický trojuholník XYZ je rôznostranný a axonometriu nazývame trimetria (obr. 1.46a).

Ak sú uhly dvoch súradnicových osí s axonometrickou priemetňou r zhodné, jednotkové úsečky na týchto osiach sa premietajú ako rovnako dlhé úsečky, axonometrický trojuholník je rovnoramenný a axonometriu nazývame dimetria (obr. 1.46b).

Ak sú uhly osí x, y, z s axonometrickou priemetňou r zhodné, priemety jednotkových úsečiek sú na všetkých osiach rovnako dlhé, axonometrický trojuholník je rovnostranný a axonometria sa nazýva izometria (obr. 1.46c).

Nech je daná všeobecná axonometria určená priemetňou r a smerom premietania s, s Ë r. Čísla p, q, r udávajúce pomery dĺžok priemetov jednotkových úsečiek jx, jy, jz na súradnicových osiach ku jednotke dĺžky j

nazývame koeficienty zmeny (skrátenia alebo predĺženia na axonometrických osiach).
Pre koeficienty zmeny platí:

p2 + q2 + r2 = 2 + cotg2j, j = Ø sr

kde j je uhol smeru premietania s priemetňou. Pre kolmú axonometriu (s Ë r, j = 90° ) je p2 + q2 + r2 = 2.

Na technických výkresoch, na ktorých podstatnú zložku tvoria pôdorysy, príp. bokorysy a priečne rezy zobrazovaných útvarov, sa často používa šikmé axonometrické zobrazenie.

Vojenská perspektíva je zobrazenie vhodné na technické výkresy používané v urbanizme pri návrhu sídlisk a zostrojovaní priemetov objektov s komplikovaným pôdorysom a zložitou stavbou. Priemety súradnicových osí x a y sú kolmé, a platí
p : q : r = 1 : 1 : 1, čiže jx = jy = jz = kj, k > 0 (obr. 1. 47a).

Kavalierna perspektíva je šikmé premietanie, v ktorom sa premieta do roviny rovnobežnej s nárysňou alebo bokorysňou. Používala sa už v 16. a 17. storočí pri zhotovovaní plánov (tzv. vedút) dôležitých miest a sídlisk.
Priemety súradnicových osí x a z, príp. y a zsú kolmé, a p : q : r = 1 : 1 : 1, jx = jy = jz = kj, k > 0 (obr. 1. 47b).

Obe spomenuté zobrazenia sa používali na vojenské účely, praktickosť konštrukcií prevláda nad dobrou názornosťou, a v oboch platí j = 45°.

Šikmé premietanie je najnázornejšie zobrazenie najčastejšie používané na technických výkresoch v strojárenstve. Priemety súradnicových osí x a z, príp. y a z sú kolmé, a pomer koeficientov zmeny je 1 : q : 1, príp. p : 1 : 1 (pričom q, príp. p je z intervalu (0, 1)). V tzv. technickom premietaní sa orientovaný uhol priemetu súradnicovej osi y s priemetom súradnicovej osi x rovná 135 °, jy = (obr. 147c).