Rules of Differentiation, Derivatives of Elementary Functions, Differential.

Basic Rules of Differentiation.

If functions f(x) and g(x) are differentiable on a set M, then functions $c \cdot f(x)$, $f(x) \pm g(x)$, $f(x) \cdot g(x)$ and $\frac{f(x)}{g(x)}$ (if $g(x) \neq 0$, $\forall x \in M$) are differentiable on M as well, and:

1. $[c \cdot f(x)]' = c \cdot f'(x), c \in \mathbb{R}$ 2. $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$ 3. $[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ 4. $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$

These rules follow directly from the definition of derivative at a point.

Derivative of a Composite Function (The Chain Rule). If a function $\varphi(x)$ has derivative at a point x_0 and a function f(u) has derivative at the point $u_0 = \varphi(x_0)$, then the composite function $F(x) = f(\varphi(x))$ has also derivative at the point x_0 and it holds: $F'(x_0) = f'(u_0) \cdot \varphi'(x_0)$, $u_0 = \varphi(x_0)$ Another form: $\left[f(\varphi(x)) \right]' = f'(\varphi(x)) \cdot \varphi'(x)$, $\varphi(x) = u$ (on a set).

Derivatives of Basic Elementary Functions. From the definition of derivative and the Rules of differentiation are derived following formulas:

1.
$$(c)' = 0, c \in R, x \in R$$

2. $(x^{a})' = ax^{a-1}, a \in R, x \in (0,\infty)$
3. $(a^{x})' = a^{x} \cdot \ln a, a > 0, a \neq 1, x \in R$ $((e^{x})' = e^{x})$
4. $(\log_{a} x)' = \frac{1}{x \cdot \ln a}, a > 0, a \neq 1, x \in (0,\infty)$ $((\ln x)' = \frac{1}{x})$
5. $(\sin x)' = \cos x, x \in R$
6. $(\cos x)' = -\sin x, x \in R$
7. $(\tan x)' = \frac{1}{\cos^{2} x}, x \neq (2k-1) \cdot \frac{\pi}{2}, k \in Z$
8. $(\cot x)' = -\frac{1}{\sin^{2} x}, x \neq k \cdot \pi, k \in Z$

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}, x \in (-1, 1)$$

10. $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}, x \in (-1, 1)$
11. $(\arctan x)' = \frac{1}{(1 + x^2)}, x \in R$
12. $(\operatorname{arc} \cot gx)' = \frac{-1}{(1 + x^2)}, x \in R$

Example 1. Differentiate functions: $f_1 : y = \frac{\ln x}{x^2}$, $f_2 : y = 2^x \cdot \arccos 3x$, $f_3 : y = 5 \cdot \arctan^2 x$, $f_4 : y = \sqrt{1 - x} \cdot \ln(\sin x)$

Logarithmic Differentiation

If
$$F(x) = [f(x)]^{g(x)}$$
 then $F'(x) = [f(x)]^{g(x)} \cdot \left(g'(x) \cdot \ln(f(x)) + g(x) \cdot \frac{f'(x)}{f(x)}\right)$ for $f(x) > 0$.)

Example 2. Find derivatives: $f_1: y = x^{\arctan x}$, $f_2: y = (\sin x)^{\ln x}$, $f_3: y = (x^2 + 2)^{\cos 3x}$

Derivatives of Higher Orders

If a function f(x) is differentiable on a set M and if its derivative f'(x) has derivative at each point $x \in M$, then this derivative is called the **second derivative** of f(x) on M and it is $d^{2} f$

denoted f''(x), or $\frac{d^2 f}{dx^2}$.

Analogously the third derivative is defined, and so on. In general: If for all points $x \in M$ the function $f^{(n-1)}(x)$ (the derivative of (n-1)-th order) is differentiable then its derivative is called the *n***-th derivative**, or derivative of *n*-th order of *f*: It means that $f^{(n)}(x) = [f^{(n-1)}(x)]'$, for n=2,3,4,...

Another notation of the *n*-th derivative is $\frac{d^n f}{dx^n}$.

<u>Example 3.</u> Find f'''(x), if $f: y = arctg \frac{1}{x}$ and $f^{(10)}(x)$, if $f: y = e^{5x}$.

Example 4. Find the formula for the *n*-th derivative of $f: y = \frac{1}{x}$

Differential and Its Geometric Meaning

Suppose a function f(x) is defined in $N_{\varepsilon}(x_0)$ and differentiable at x_0 . The difference $\Delta f = f(x) - f(x_0)$ is called the increment of the function, corresponding to the increment of independent variable $\Delta x = x - x_0$. The expression $f'(x_0)(x - x_0)$ is called the differential of f(x) at x_0 and it is denoted $df_{x_0} : df_{x_0} = f'(x_0)(x - x_0)$

The differential df_{x_0} of a function f(x) at a point x_0 is equal to the increment of the ycoordinate of the tangent line drawn to the G(f) at the point $[x_0, f(x_0)]$. If the difference $x - x_0$ approaches 0, then $\Delta f \doteq df$, thus $f(x) - f(x_0) \doteq f'(x_0)(x - x_0)$

For the function f: y = x, we have $df = dx = \Delta x$, that is why the differential at an arbitrary point is denoted : $df = f'(x) \cdot dx$.

Example 5. Find the differential of $f: y = \arctan x$, at $x_0 = 2$ and its value at x = 3.

Example 6. By means of differential calculate approximately $\sqrt{408}$.

Example 7. The radius of a circle is to be increased from the initial value of $r_0 = 10$ by an amount dr = 0.1. Estimate the corresponding increase in the circle's area $A = \pi r^2$ by calculating dA. Compare dA with the true change ΔA .

<u>Example 8.</u> An edge of a cube is measured as 6 in. with a possible error of ± 0.05 in. The volume of the cube is to be calculated from this measurement. Estimate the error that would occur in the volume calculation.

Example 9. Differentiate: $y = x^2 \cdot \sqrt{x} - 2^{-x} \cdot \ln x$, $y = \arccos 2x \cdot \log_4 (x^2 - x)$, $y = x^x \cdot \tan(\sin 3x)$

Example 10. Write equation for the tangent line to the graph of $f: y = 4x + \frac{3}{x}$, parallel to the stright line p: 11x - 3y + 2 = 0

<u>Example 11.</u> By means of differential calculate aproximately the following values: arcsin 0.2, $\tan 46^{\circ}$, $2^{1.002}$, arctan 1.1.

Compare calculated values with the values, found by means of calculator.