Rules of Differentiation, Derivatives of Elementary Functions, Differential.

Basic Rules of Differentiation.

If functions $f(x)$ and $g(x)$ are differentiable on a set M, then functions $c \cdot f(x), f(x) \pm g(x)$, $f(x) \cdot g(x)$ and $\frac{f(x)}{g(x)}$ (if $g(x) \neq 0, \forall x \in M$) are differentiable on M as well, and:

1. $[c \cdot f(x)]^{\prime}=c \cdot f^{\prime}(x), c \in R$
2. $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
3. $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
4. $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}$

These rules follow directly from the definition of derivative at a point.
Derivative of a Composite Function (The Chain Rule). If a function $\varphi(x)$ has derivative at a point x_{0} and a function $f(u)$ has derivative at the point $u_{0}=\varphi\left(x_{0}\right)$, then the composite function $F(x)=f(\varphi(x))$ has also derivative at the point x_{0} and it holds: $F^{\prime}\left(x_{0}\right)=f^{\prime}\left(u_{0}\right) \cdot \varphi^{\prime}\left(x_{0}\right), u_{0}=\varphi\left(x_{0}\right)$
Another form: $[f(\varphi(x))]=f^{\prime}(\varphi(x)) \cdot \varphi^{\prime}(x), \varphi(x)=u \quad$ (on a set).

Derivatives of Basic Elementary Functions. From the definition of derivative and the Rules of differentiation are derived following formulas:

1. $(c)^{\prime}=0, \quad c \in R, \quad x \in R$
2. $\left(x^{a}\right)^{\prime}=a x^{a-1}, \quad a \in R, \quad x \in(0, \infty)$
3. $\left(a^{x}\right)^{\prime}=a^{x} \cdot \ln a, \quad a>0, a \neq 1, \quad x \in R \quad\left(\left(e^{x}\right)^{\prime}=e^{x}\right)$
4. $\left(\log _{a} x\right)^{\prime}=\frac{1}{x \cdot \ln a}, \quad a>0, a \neq 1, \quad x \in(0, \infty) \quad\left((\ln x)^{\prime}=\frac{1}{x}\right)$
5. $(\sin x)^{\prime}=\cos x, \quad x \in R$
6. $(\cos x)^{\prime}=-\sin x, \quad x \in R$
7. $(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}, x \neq(2 k-1) \cdot \frac{\pi}{2}, k \in Z$
8. $(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}, x \neq k \cdot \pi, k \in Z$
9. $(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}, x \in(-1,1)$
10. $(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}, \quad x \in(-1,1)$
11. $(\arctan x)^{\prime}=\frac{1}{\left(1+x^{2}\right)}, x \in R$
12. $(\operatorname{arccot} g x)^{\prime}=\frac{-1}{\left(1+x^{2}\right)}, x \in R$

Example 1. Differentiate functions: $f_{1}: y=\frac{\ln x}{x^{2}}, f_{2}: y=2^{x} \cdot \arccos 3 x, f_{3}: y=5 \cdot \arctan ^{2} x$, $f_{4}: y=\sqrt{1-x} \cdot \ln (\sin x)$

Logarithmic Differentiation

If $\quad F(x)=[f(x)]^{g(x)} \quad$ then $\quad F^{\prime}(x)=[f(x)]^{g(x)} \cdot\left(g^{\prime}(x) \cdot \ln (f(x))+g(x) \cdot \frac{f^{\prime}(x)}{f(x)}\right) \quad$ for $f(x)>0$.)

Example 2. Find derivatives: $f_{1}: y=x^{\arctan x}, f_{2}: y=(\sin x)^{\ln x}, \quad f_{3}: y=\left(x^{2}+2\right)^{\cos 3 x}$

Derivatives of Higher Orders

If a function $f(x)$ is differentiable on a set M and if its derivative $f^{\prime}(x)$ has derivative at each point $x \in M$, then this derivative is called the second derivative of $f(x)$ on M and it is denoted $f^{\prime \prime}(x)$, or $\frac{d^{2} f}{d x^{2}}$.
Analogously the third derivative is defined, and so on. In general:
If for all points $x \in M$ the function $f^{(n-1)}(x)$ (the derivative of ($n-1$)-th order) is differentiable then its derivative is called the \boldsymbol{n}-th derivative, or derivative of n-th order of f :
It means that $f^{(n)}(x)=\left[f^{(n-1)}(x)\right]$, for $n=2,3,4, \ldots$
Another notation of the n-th derivative is $\frac{d^{n} f}{d x^{n}}$.
Example 3. Find $f^{\prime \prime \prime}(x)$, if $f: y=\operatorname{arctg} \frac{1}{x}$ and $f^{(10)}(x)$, if $f: y=e^{5 x}$.
Example 4. Find the formula for the n-th derivative of $f: y=\frac{1}{x}$
Differential and Its Geometric Meaning

Suppose a function $f(x)$ is defined in $N_{\varepsilon}\left(x_{0}\right)$ and differentiable at x_{0}. The difference $\Delta f=f(x)-f\left(x_{0}\right)$ is called the increment of the function, corresponding to the increment of independent variable $\Delta x=x-x_{0}$. The expression $f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is called the differential of $f(x)$ at x_{0} and it is denoted $d f_{x_{0}}: d f_{x_{0}}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

The differential $d f_{x_{0}}$ of a function $f(x)$ at a point x_{0} is equal to the increment of the ycoordinate of the tangent line drawn to the $G(f)$ at the point $\left[x_{0}, f\left(x_{0}\right)\right]$. If the difference $x-x_{0}$ approaches 0 , then $\Delta f \doteq d f$, thus $f(x)-f\left(x_{0}\right) \doteq f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

For the function $f: y=x$, we have $d f=d x=\Delta x$, that is why the differential at an arbitrary point is denoted : $d f=f^{\prime}(x) \cdot d x$.

Example 5. Find the differential of $f: y=\arctan x$, at $x_{0}=2$ and its value at $x=3$.
Example 6. By means of differential calculate approximately $\sqrt{408}$.
Example 7. The radius of a circle is to be increased from the initial value of $r_{0}=10$ by an amount $d r=0.1$. Estimate the corresponding increase in the circle's area $A=\pi r^{2}$ by calculating $d A$. Compare $d A$ with the true change ΔA.

Example 8. An edge of a cube is measured as 6 in. with a possible error of ± 0.05 in. The volume of the cube is to be calculated from this measurement. Estimate the error that would occur in the volume calculation.

Example 9. Differentiate:
$y=x^{2} \cdot \sqrt{x}-2^{-x} \cdot \ln x, y=\arccos 2 x \cdot \log _{4}\left(x^{2}-x\right), y=x^{x} \cdot \tan (\sin 3 x)$
Example 10. Write equation for the tangent line to the graph of $f: y=4 x+\frac{3}{x}$, parallel to the stright line $p: 11 x-3 y+2=0$

Example 11. By means of differential calculate aproximately the following values: $\arcsin 0.2$, $\tan 46^{\circ}, 2^{1.002}$, arctan 1.1.
Compare calculated values with the values, found by means of calculator.

