
Limits and Continuity 
 
 
Neighbourhoods. 
 
Let 0>ε  and Ra∈  , then ( ) ( )εεε +−= aaaN ,  is called the ε -neighbourhood of the 

number a (the point a). ( )εε +=+ aaN ,  is called the ε -right-hand neighbourhood and 

( )aaN ,εε −=−  the ε -left-hand neighbourhood of the number a. 
 

Example 1. Consider 12: += xyf , ( ) RfD = ,  ( )fDx ∈= 2 , ( ) 52 =f  .  Let 0>ε  and 
( ) ( )5εNxf ∈ ,e.a.: 
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follows,  that if x tends to 2, ( )xf  tends to 5. 
 
Limit of a function ( )xf  at a point a (proper).  
 
Let ( )xf  be defined in a neighbourhood of a point a, ax ≠ . A number b is said to be a limit 
of the function f at the point a, if for any ( )bNε  there exists ( )aNδ  such that for ( )aNx δ∈∀ , 

ax ≠  is ( ) ( )bNxf ε∈ .  
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ax
=

→
lim  

Hence: ( ) ( ) εδδε <−⇒≠<−>∃>∀⇔=
→

bxfaxaxbxf
ax

,:0,0lim    

In Example 1: ( ) 5lim
2

=
→

xf
x
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Example 3. Show, that ax
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Remark. The function 2: += xyf  is defined on ( ) ),2 ∞−=fD .  It follows, that there is 

no 0>δ , such that ( ) ( )fDN ⊂− 2δ . Therefore 2lim
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If in the definition of limit we replace ( )aNδ  by ( )aN +

δ  or ( )aN −
δ , we obtain definitions of 

one-sided limits: 
( ) ( ) ( ) ( )bNxfaNxbxf
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Example 4. Show, that 
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Basic properties of limits. 
 
1. Any function at any point has at most one limit. 
2. If there exists a limit of a function f at a point a, then the function f is bounded at a 

neighbourhood of the point a. 
3. If ( ) ( ) ( ) RacxfRfDRccxf
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5. If ( ) ( ) bxhxf
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limlim  and if there exists ( )aNε  such that: 

( ) ( ) ( ) ( )xhxgxfaxaNx ≤≤≠∈∀ :,ε , then ( ) bxg
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also for one-sided limits 
 

Example 5. Compute: ( )4lim 2
3

+
→

x
x

 ,  
1

2lim 2

5

1 +−→ x
x

x
 ,  

8
4lim 3

2

2 −

−
→ x

x
x

   

 
Improper limits and limits at improper points. 
 

Example 6. Consider ( ) { }01: 2 −== RfD
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Since ( )xf  is unbounded in any neighbourhood ( )0εN , ( )xf
ax→
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It follows: if x tends to 0, ( )xf  tends to ∞   
 
 
 
 



 
 
 
Improper limit of a function f(x) at a point a.  
 
Let ( )xf  be defined in a neighbouhood of a point a, ax ≠ . It is said, that f has an improper 
limit ∞+  (or ∞− ) at the point a and it is written 

( ) ( ) ( ) ( ) ( ) ( )( )KxforKxfaxaNxaNKorxf
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One-sided improper limits at a are defined analogously. 
 

Example 7. By means of definition find: 
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Let's introduce two more properties of limits: 
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7. If ( )xf  is bounded in an ( )aNε  and ( ) ±∞=
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Limits and improper limits at ∞+  (or ∞− ) . 
 
Let ( )xf  be defined on an interval ( )∞,a .  
Then:  
       ( ) ( ) ( ) ( ) ( )bNxfAxAbNRbbxf

x
εε ∈⇒>>∃∀⇔∈=

∞→
:0:lim    

       ( ) ( ) ( ) ( )( )KxforKxfAxAKorxf
x

−<>⇒>>∃>∀⇔∞−∞=
∞→

:0:0lim    

 
If ( )xf  is defined on an interval ( )a,∞− , limits at -∞ are defined similarly:  
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Properties 1. - 7. hold for limits at improper points ∞±  too. 
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Continuity of a function  f(x)  at a point a. 
 
It is said that a function ( )xf  is continuous at a point a if ( ) ( )afxf

ax
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lim . It means: 

 
1. ( )xf  is defined at a ( )( )fDa∈ ,  
2.  there exists ( )xf

ax→
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3. this limit is equal to ( )af . 
 
It is said, that f at a is continuous on the right (or on the left), if  
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Remark. A function ( )xf  is said to be continuous on an interval ba,  if it is continuous at 
each ( )bax ,∈  and moreover, if it is continuous at a on the right and at b on the left. 
 
From properties 4a) – 4e) it follows: 
If ( )xf  and ( )xg  are continuous at a point a, then at this point are continuous also the 
functions: 
 
1. ( ) ( )xgxf ± ,   
2. ( ) Rcxfc ∈⋅ , ,   
3. ( ) ( )xgxf ⋅ ,   

4. ( )
( )xg
xf , if ( ) 0≠ag  and  

5. ( )[ ] Nkxf k ∈,    
 
All elementary function are continuous at each point of their domains of definition. 
 
Points of discontinuity. 
 
If a function f is not continuous at a point a, the point a is called a point of discontinuity of f. 
There are 3 possibilities for a point a, to be the point of discontinuity: 
 
1. ( )xf  has no limit at a 
2. ( )fDa∉  
3. ( ) ( )afxf
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